Chem. Ber. 103, 2902-2921 (1970)

Günter Häfelinger

MO-π-Bindungsordnung-Bindungslängen-Beziehungen für Hetero-π-Systeme, I

π -Systeme mit CN-Bindungen

Aus dem Lehrstuhl für Organische Chemie der Universität Tübingen

(Eingegangen am 25. März 1970)

Mit Hilfe einer für ungesättigte Kohlenwasserstoffe erhaltenen HMO- π -Bindungsordnung-Bindungslängen-Beziehung werden für CN-Hetero- π -Bindungssysteme die empirischen Resonanzintegral-Heteroparameter $k_{C=N}$ und k_{C-N} zu 1.10 bzw. 1.00 bestimmt. Die mit diesen Parametern berechneten HMO- π -Bindungsordnungen ergeben mit experimentellen Bindungsabständen, die mit einer Standardabweichung von höchstens 0.015 Å bestimmt wurden, eine lineare Beziehung, deren Gleichung nach der Methode der kleinsten Fehlerquadrate zu

$$R_{\rm rs}^{\rm HMO}$$
 [Å] = 1.474 0.225 $p_{\rm rs}$

mit einer Standardabweichung von 0.019 Å und einem Korrelationskoeffizienten von 0.865 für 114 Punkte bestimmt wurde. Für PPP-SCF- π -Bindungsordnungen beträgt die Ausgleichsgerade

$$R_{\text{rs}}^{\text{PPP}}$$
 [Å] = 1.443 - 0.167 p_{rs}

mit einer Standardabweichung von 0.022 Å und einem Korrelationskoeffizienten von 0.801 für 168 Werte.

MO- π -Bond Order-Bond Lengths Relations for Hetero- π -Systems, I π -Systems with CN-Bonds

A HMO- π -bond order-bond lengths relation obtained for unsaturated hydrocarbons allows the empirical determination of the HMO resonance integral parameters for CN- π -bonds as $k_{C=N} = 1,10$ and $k_{C-N} = 1,00$. HMO- π -Bond orders calculated with these parameters give a linear relation with bond lengths determined experimentally with a standard deviation of less than 0,015 Å. The equation determined by linear least squares methods is

$$R_{\rm rs}^{\rm HMO}$$
 [Å] = 1,474–0,225 $p_{\rm rs}$

with a standard deviation of 0,019 Å and a correlation coefficient of 0,865 for 114 points. For PPP-SCF- π -bond orders the least squares equation yields

$$R_{rs}^{PPP}$$
 [Å] = 1,443 - 0,167 p_{rs}

with a standard deviation of 0,022 Å and a correlation coefficient of 0,801 for 168 points.

Zwischen der MO- π -Bindungsordnung¹⁾ und dem entsprechenden Bindungsabstand in ungesättigten Verbindungen besteht ein Zusammenhang, der theoretisch begründet

¹⁾ C. A. Coulson, Proc. Roy. Soc. [London] Ser. A 169, 413 (1939).

ist^{1,2)} und durch eine Vielzahl empirischer Bindungsordnung-Bindungslängen-Beziehungen sowohl für ungesättigte Kohlenwasserstoffe³⁾ als auch für Hetero- π -Systeme bestätigt wurde. Für CN-Bindungen wurden in der Literatur nichtlineare und lineare Bindungsordnung-Bindungslängen-Beziehungen angegeben.

Die nichtlinearen Beziehungen beruhen auf der Formel von Coulson¹⁾ (1),

$$R_{\rm rs} = S - \frac{S - D}{1 - \kappa \frac{1 - p_{\rm rs}}{p_{\rm rs}}} \tag{1}$$

auf einer parabolischen Beziehung^{4,5)} (2)

$$\frac{1}{R_{\rm rs}^2} = E + F \cdot (p_{\rm rs} + 1)$$
(2)

oder sind empirisch bestimmt und nicht durch eine Funktion definiert^{6,7)}.

Die Anwendung von Formel (1) verlangt die Kenntnis des "reinen" Einfachbindungsabstandes S, des "reinen" Doppelbindungsabstandes D und eines weiteren Punktes mit bekannter Bindungsordnung und Bindungslänge zur Ermittlung der Konstanten K. Die in der Literatur angegebenen Parameterwerte sind in Tab. 1 zusammengestellt.

Tab. 1. Parameter für nichtlineare Bindungsordnung-Bindungslängen-Bezichungen

Einfachbin- dungsabstand	Doppelbin- dungsabstand		Zusat	zwert	Para Gleic	- •.	
	$\begin{array}{l} D \ [\text{Å}] \\ p = 1.0 \end{array}$	K	<i>R</i> _{rs} [Å]	$p_{\rm TS}$	Ε	F	Lit.
1.475	1.28	0.80	1.15	2.0	_		8>
1.475	1.28	0.6625	1,183	2.0			9)
1.474	1.295 *>	0.923	1.157	1,890			10)
1.470	1.255	0,6196	1.156	2.0		_	11)
1.440	1.280 **)	0.891	1.154	1.9804		_	12)
1.480	1.275		1,135	2.0	0.309	0.157	4)
1.475	1.290		1.156	2.0	0.316	0.144	5)
1.435 ***)	1.267	_	1,336	0,600	-		6)
1.474	1.274	_	1.157	2.0			7)

- H. C. Longuet-Higgins und L. Salem, Proc. Roy. Soc. [London] Ser. A 251, 172 (1959).
 Siehe Überblick in: G. Häfelinger, Tetrahedron [London] 26, 2469 (1970).
- ⁴⁾ W. Gordy, J. chem. Physics **15**, 305 (1947).
- 5) H. O. Jenkins, J. Amer. chem. Soc. 77, 3168 (1955); Trans. Faraday Soc. 51, 1042 (1955).
- 6) T. H. Goodwin und A. L. Porte, J. chem. Soc. [London] 1956, 3595.
- 7) A. Lofthus, Molecular Physics 2, 367 (1959).
- 8) E. G. Cox und G. A. Jeffrey, Proc. Roy. Soc. [London] Ser. A 207, 110 (1951).
- ⁹⁾ F. Bertinotti, G. Giacomello und A. M. Liquori, Acta crystallogr. [Copenhagen] 9, 510 (1956).
- ¹⁰⁾ T. Anno, M. Ito, R. Shimada, A. Sadô und W. Mizashima, Bull. chem. Soc. Japan 32, 827 (1959).
- 11) E. Bayer und G. Häfelinger, Chem. Ber. 99, 1689 (1966).

12) H. P. Figeys und P. Dedieu, Theoret. chim. Acta [Berlin] 9, 82 (1967).

Chemische Berichte Jahrg. 103

Diese nichtlinearen Bindungsordnung-Bindungslängen-Beziehungen umfassen den gesamten Bereich der CN-Bindungen von der Einfach- bis zur Dreifachbindung ohne Berücksichtigung der Hybridisierung der beteiligten Atome. Wie bei den Kohlenwasserstoffen ^{13,14} ist es jedoch notwendig, jeweils Bindungen gleicher Hybridisierung zu betrachten. Daher werden hier nur Bindungslängen und π -Bindungsordnungen für C_{sp2}-N_{sp2}-Bindungen berücksichtigt. Für diesen Hybridisierungsbereich wurden bisher außer der empirischen nichtlinearen Beziehung von *Goodwin*⁶ nur lineare Beziehungen nach Gleichung (3) angegeben, deren Parameterwerte

$$R_{\rm TS} = A - B \, p_{\rm TS} \tag{3}$$

in Tab. 2 zusammengestellt sind.

Tab. 2. Parameter für lineare π-Bindungsordnung-Bindungslängen-Beziehungen

$C_{sp^2} - N_{sp^2}$ -Einfach- bindungsabstand \mathcal{A} [Å]	В	Doppelbindungs- abstand für $p \approx 1.0$ [Å]	Lit.	
1.475	.195	1.28	8)	
1.475	.240	1.235	15)	
1.40	.12	1.28	16)	
1.478	.208	1.270	17)	
1.480	.185	1.295	18)	
1.451	180	1.271	19)	
1 445	175	1 270	20)	
1 449	179	1.270	21)	
1.458	.180	1.278	22)	

Charakteristische Bindungsabstände

1. Csp2-Nsp2-Einfachbindungsabstand

Dieser ist wie bei den CC-Bindungen³⁾ eine theoretische Größe, die am besten durch Extrapolation aus der Bindungsordnung-Längenbeziehung erhalten wird. Im Gegensatz zu den CC-Bindungen gibt es hier jedoch zwei experimentelle Werte²³⁾. Beim *N*-Methyl-acetanilid²⁴⁾ (1) ist der Benzolring um 90° gegenüber dem freien Elektronenpaar des Stickstoffs verdrillt. Damit kann keine Wechselwirkung zwischen den

¹³⁾ C. A. Coulson, Volume commémoratif Victor Henri, Desoer, Liège 1948.

- 14) B. P. Penfold und W. N. Lipscomb, Acta crystallogr. [Copenhagen] 14, 589 (1961).
- 15) T. Hahn, Z. Kristallogr. 109, 438 (1957).
- ¹⁶⁾ H. J. Bernstein, J. physic. Chem. 63, 565 (1959).
- 17) R. L. Miller, P. G. Lykos und H. N. Schmeising, J. Amer. chem. Soc. 84, 4623 (1962).
- ¹⁸⁾ A. Julg und P. Carles, J. Chim. physique 59, 852 (1962).
- 19) K. Nishimoto und L. S. Forster, Theoret. chim. Acta [Berlin] 4, 155 (1966).
- ²⁰⁾ M. J. S. Dewar und G. J. Gleicher, J. chem. Physics 44, 759 (1966).
- ²¹⁾ M. J. S. Dewar und T. Morita, J. Amer. chem. Soc. 91, 796 (1969).
- 22) I. Fischer-Hjalmars und M. Sundbom, Acta chem. scand. 22, 607 (1968).
- 23) A. Camerman, Canad. J. Chem. 48, 179 (1970).
- ²⁴⁾ B. F. Pedersen, Acta chem. scand. 21, 1415 (1967).

 π -Systemen des Benzolrings und der Amidgruppe stattfinden. Beide Atome sind jedoch sp²-hybridisiert, so daß der Abstand von 1.481 \pm 0.027 Å den gesuchten Einfachbindungsabstand darstellt. Dieser Wert ist jedoch größer als der C_{sp³}-N_{sp³}-Einfachbindungsabstand¹¹) von 1.470 \pm 0.009 Å. Wegen der zunehmenden Bindungsverkürzung mit zunehmendem s-Charakter der Hybridorbitale sollte aber ein kleinerer Wert erwartet werden.

Im *N*-Phenyl-2.4.6-trimethyl-pyridiniumperchlorat ²⁵⁾ (2) wurde der $C_{sp2} - N_{sp2}^{\oplus}$ -Einfachbindungsabstand zu 1.470 ± 0.015 Å bestimmt. Die Verdrillung zwischen Benzol- und Pyridiniumring beträgt 83.5°, so daß ebenfalls keine Wechselwirkung zwischen den π -Systemen auftritt. Die positive Ladung am Stickstoffatom sollte aber eine Bindungsverlängerung bewirken, denn beim Übergang von der $C_{sp3} - N_{sp3}^{\oplus}$ -Einfachbindung aliphatischer Amine zur $C_{sp3} - N_{sp3}^{\oplus}$ -Einfachbindung aliphatischer Amine zur $C_{sp3} - N_{sp3}^{\oplus}$ -Einfachbindung aliphatischer Amine zur $C_{sp3} - N_{sp3}^{\oplus}$ -Einfachbindung aliphatischer Ammoniumverbindungen wird eine Verlängerung auf 1.504 ± 0.006 Å beobachtet¹¹⁾. In 2 ist die positive Ladung jedoch über den Ring delokalisiert, so daß die Verlängerung nicht so groß wie bei den Einfachbindungen sein dürfte. Die Werte von 1 und 2 genügen somit nicht zur genauen experimentellen Festlegung des $C_{sp2} - N_{sp2}^{\bullet}$ -Einfachbindunges.

2. C_{sp²}=N_{sp²}-Doppelbindungsabstand

Für unkonjugierte CN-Doppelbindungen, wie sie z. B. in aliphatischen Iminen vorlicgen, sind bisher keine genauen Abstandsbestimmungen durchgeführt worden. Der $C_{sp2} = N_{sp2}$ -Doppelbindungsabstand ist daher bis heute noch eine theoretische Größe, die ebenfalls durch Extrapolation aus einer Bindungsordnung-Bindungslängen-Berechnung erhalten werden kann. Wie Tab. 1 und 2 zeigen, streuen die aus diesen Beziehungen erhaltenen Werte beträchtlich.

Hier ist zu betonen, daß für Bindungen $C_{sp^2}=X_{sp^2}$ zwischen Kohlenstoff und einem Heteroatom X die MO- π -Bindungsordnung der experimentell bestimmbaren "reinen" unkonjugierten Doppelbindung immer kleiner als 1.00 ist. Der genaue Wert der π -Bindungsordnung hängt von der Wahl der Heteroatom-Parameter und der Berechnungsmethode (HMO oder PPP-SCF) ab. Der Bindungsabstand, der der π -Bindungsordnung $p_{rs} = 1.00$ entspricht, ist jeweils eine durch Extrapolation zu gewinnende Größe, die nicht dem experimentellen Doppelbindungsabstand entspricht. Dies wurde bei den bisher veröffentlichten Bindungsordnung-Bindungslängen-Beziehungen nur von *Anno* et al.¹⁰ und *Figeys* und *Dedieu*¹² berücksichtigt.

Für das *N*-Methyl-methylenimin ²⁶⁾ (3) wurde mikrowellenspektroskopisch der C = N-Abstand zu 1.30 Å ohne Fehlerangabe bestimmt.

²⁵⁾ A. Camerman, L. H. Jensen und A. T. Balaban, Acta crystallogr. [Copenhagen] B 25, 2623 (1969).

²⁶⁾ K. V. L. N. Sastry und R. F. Curl, J. chem. Physics 41, 77 (1964).

Der Wert scheint recht ungenau und zu hoch zu sein, denn beim N.N-Dimethylisopropylideniminium-perchlorat ²⁷⁾ (4) beträgt der Bindungsabstand 1.302 \pm 0.043 Å. Dieser $C_{sp^2} = N_{sp^2}^{\oplus}$ -Abstand ist aus den auf S. 2905 dargelegten Gründen wahrscheinlich größer als der $C_{sp^2} = N_{sp^2}$ -Abstand im neutralen Molekül. Außerdem ist ebenfalls der Fehler zu groß für die hier gewünschte Genauigkeit. Beim Hexafluoracetonimin ²⁸⁾ (5) beträgt der C=N-Bindungsabstand 1.291 \pm 0.018 Å. Zwei CF₃-Gruppen bewirken jedoch eine Verlängerung einer benachbarten Doppelbindung. Diese beträgt beim Übergang von Isobutylen ²⁹⁾ (6) ($R_{C \rightarrow C} = 1.331$ Å) zum Hexafluorderivat ²⁶⁾ 7 ($R_{CC} = 1.365$ Å) 0.034 Å und beim Übergang vom Aceton ²⁶⁾ ($R_{C \rightarrow O} = 1.210$ Å)

zum Hexafluoraceton²⁶⁾ (8) ($R_{CO} = 1.246$ Å) 0.036 Å. Korrigiert man den C=N-Abstand in 5 um 0.035 Å, so erhält man 1.256 \pm 0.015 Å als wahrscheinliche $C_{sp2}=N_{sp2}$ -Bindungslänge im Acetonimin. Dieser Wert steht in guter Übereinstimmung mit dem beim Pyrazolinhydrochlorid³⁰) (9) beobachteten C=N-Bindungsabstand von 1.255 \pm 0.027 Å.

Ein wahrscheinlicher Wert für den $C_{sp^2}=N_{sp^2}$ -Doppelbindungsabstand kann auf folgende Weise erhalten werden: In Abbild. 1 sind die in Tab. 3 aufgeführten Abstandswerte für C_{sp^3} -X-Einfachbindungen (X = C, N, O, F) und C_{sp^2} =X-Doppelbindungen (X = C, N, O) gegen einen gleichförmigen Parameter aufgetragen.

Bindung CX	Verbindung	Bindungslänge [Å]	Methode*)	Lit.
C _{sp³} -C _{sp³}	Propan	1.526 ± 0.003	MW	31)
$C_{SP}^{3} - N_{SP}^{3}$	Methylamin	1.474 ± 0.005	MW	32)
C _{sp³} -O _{sp³}	Methanol	1.428 + 0.003	MW	33)
$C_{SD^3} - F_{SD^3}$	Methylfluorid	1.3853 ± 0.00005	MW	34)
$C_{SP}^2 = C_{SD}^2$	Äthylen	1.333 0.002	ED	35)
$C_{sp^2} = O_{sp^2}$	Formaldehyd	$1.208\ \pm\ 0.003$	MW	36)

Tab. 3. CX-Einfach- und -Doppelbindungsabstände (X = C, N, O, F)

*) Methoden zur Bindungslängenbestimmung: MW = Mikrowellenspektroskopie, ED - Elektronenbeugung.

Die $C_{sp^3}-X_{sp^3}$ -Einfachbindungsabstände liegen innerhalb ihrer Fehlergrenzen auf einer Geraden. Verbindet man in Analogie dazu die $C_{sp^2}=X_{sp^2}$ -Doppelbindungsabstände mit X = C und O durch eine Gerade, so erhält man für die $C_{sp^2}=N_{sp^2}$ -Doppelbindung einen Wert von 1.270 \pm 0.015 Å.

- ²⁸⁾ R. L. Hilderbrandt, A. L. Andreassen und S. H. Bauer, Acta crystallogr. [Copenhagen] A 25, S 152 (1969).
- 29) L. S. Bartell und R. A. Bonham, J. chem. Physics 32, 824 (1960).
- 30) M. Nardelli und G. Fava, Acta crystallogr. [Copenhagen] 15, 214 (1962).
- 31) D. R. Lide, J. chem. Physics 33, 1514 (1960).
- ³²⁾ T. Nishikawa, J. physic. Soc. Japan 12, 668 (1957).
- 33) K. Kimura und M. Kubo, J. chem. Physics 30, 151 (1959).
- 34) F. A. Anderson, B. Bak und S. Brodersen, J. chem. Physics 24, 989 (1956).
- 35) L. S. Bartell und R. S. Bonham, J. chem. Physics 31, 400 (1959).
- ³⁶⁾ K. Takagi und T. Oka, J. physic. Soc. Japan 18, 1174 (1963).

²⁷⁾ L. M. Trefonas, R. L. Flurry, Jr., R. Majeste, E. A. Meyers und R. F. Copeland, J. Amer. chem. Soc. 88, 2145 (1966).

Abbild. 1. Linearer Zusammenhang zwischen CX-Einfach- und -Doppelbindungsabständen (X = C, N, O, F)

Wahl der Heteroatomparameter

Im Rahmen der einfachen HMO-Theorie werden Heteroatome X durch eine Änderung der Coulombintegrale (4) und Resonanzintegrale (5) berücksichtigt^{37a)}. Für

$$a_{\mathbf{X}} = a_{\mathbf{C}} + h_{\mathbf{X}}\beta_{\mathbf{C}\mathbf{C}}$$
 (4) $\beta_{\mathbf{C}\mathbf{X}} = k_{\mathbf{C}\mathbf{X}}\beta_{\mathbf{C}\mathbf{C}}$ (5)

die Konstanten h_X und k_{CX} wurden je nach der berechneten Moleküleigenschaft unterschiedliche Werte angegeben. Eine kleine Auswahl dieser Parameter für CN-Bindungen ist in Tab. 4 zusammengestellt.

In Tab. 5 sind stickstoffhaltige ungesättigte Verbindungen, deren Bindungsabstände mit einer Standardabweichung von höchstens 0.015 Å bestimmt wurden, zusammengestellt. Die HMO- π -Bindungsordnungen wurden mit den von *Streitwieser*^{37b)} vorgeschlagenen Heteroparametern ohne Berücksichtigung der Überlappungsintegrale oder eines induktiven Hilfsparameters berechnet*).

^{*)} Die Berechnungen wurden mit dem CDC 3300-Computer des Rechenzentrums der Universität Tübingen mit einem HMO-FORTRAN-Programm von *I. Brauman* und *A. Streitwieser Jr.* durchgeführt.

³⁷⁾ A. Streitwieser Jr., Molecular Orbital Theory for Organic Chemists 1961, J. Wiley & Sons New York a) S. 117ff., b) S. 135, c) S. 97ff., d) S. 119, e) S. 105.

hN	h - N	$h = \underbrace{\stackrel{\oplus}{N}}_{I} -$	kc=N-	k_{C-N-1}	$k_{\mathbf{C}} = \underbrace{\mathbf{N}}_{\mathbf{N}} - \underbrace{\mathbf{N}}_{\mathbf{N}}$	Verbindungs- klasse	berechnete ex- perimentelle Größe	Lit,
0.5	1.5	2.0	1.0	0.8		allgemein		376)
0.4	1.0		1.0	0.9		allgemein		38)
0.44	1.19		1.06	1.29		allgemein	NMR*)	12)
0.83	1.47		1.06	1.30		allgemein	UV	39)
0.4			1.25			Pyridine	UV	40)
0.4	1.0	2.0	1.0	0.8	0.7	Heterocyclen	υν	41)
0.38	2.7		1.0	1.0		5- u. 6-Ring- heterocyclen	Dipolmoment	42)
0.8	1.7		1.0	0.7		Heterocyclen	Dipolmoment	43)
0.55	1.9		1.0	0.7		Isoxazole	Dipolmoment	44)
1.0	2.0	2.5	1.0		0.3	subst. Phenole	Dipolmoment	45)
0.8	1.5		1.0	0.8		Sydnone	Reaktivität	46)

Tab. 4. Heteroatomparameter für CN-Bindungen

*) Chem. Verschiebungen, Halbstufenreduktionspotentiale.

³⁸⁾ B. Pullman und A. Pullman, Results of Quantum Mechanical Calculations of the Electronic Structure of Biochemicals Vol. I, S. VI, Institute Biologique-Physicochimique, Université Paris 1960.

- 39) G. Derflinger und H. Lischka, Mh. Chem. 100, 1003 (1969).
- 40) K. Hensen und K. P. Messer, Chem. Ber. 102, 957 (1969).
- ⁴¹⁾ A. J. Wohl, Tetrahedron [London] 24, 6889 (1968).
- 42) H. Hamano und M. F. Hameka, Tetrahedron [London] 18, 985 (1962).
- 43) L. B. Kier, Tetrahedron Letters [London] 1965, 3273.
- 44) R. Cencioni, P. F. Franchini und M. Orienti, Tetrahedron [London] 24, 151 (1968).
- ⁴⁵⁾ A. J. Owen, Tetrahedron [London] 25, 3693 (1969).
- 46) E. B. Roche und L. B. Kier, Tetrahedron [London] 24, 1673 (1968).

		8un	tand [Å]	oaro- eichung ß [Å]	hode *)				- Die	duuccor	davaraa	-			
Nr.	Verbindung	Bind	$A_{\rm LS}$ $R_{\rm rs}$	abwe o 10	Meti	Lit.	HMO**)	нмо*	π-Bin **> PPP	Lit.	PPP	prs Lit.	ррр	Lit.	PPP Lit.
C E	′sp² Nsp²- ïnfachbindung														
1	N-Methyl-acet- anilid	1 - 2	1.481	9	х	a)	0.0000	0.0000	0.000						
2	N-Phenyl-2.4.6- trimethyl- pyridiniumper- chlorat	1 - 2	1.470	5	х	b)	0.0000	0.0000	0.000						
C D	$S_{SP}^{2} = N_{SP}^{2}$														
3	N-Methyl-methylen- imin	1-2	1.30	10	MW	/ c)	.9701	,9398	.959	ss)	.8312	c)	.9592	c)	
4	Hexafluoraceton- imin (korr.)	1-2	1.256	5	Е	d)	.9701	.9398	.959	ss)	.8312	c)	.9592	c)	
5	Pyrazolinhydro- chlorid	1-2	1.255	9	х	e)	.9701	.9398	.959	ss)	.8312	c)	.9592	c)	
6	Interpolations- wert	1-2	1.270	5	2	. S. 2906	.9701	.9398	.959	ss)	.8312	c)	.9592	c)	
7	Benzalanilin $\underbrace{_{2} _{2} _{3} _{3} _{N} \underbrace{_{3} _{1} $	$\begin{array}{c} 1-2\\ 2-3\\ 3-4\\ 4-5\\ 5-6\\ 1-6\\ 6-7\\ 7-8\\ 8-9\\ 9-10\\ 10-11\\ 11-12\\ 12-13\\ 13-14\\ 9-14 \end{array}$	1.398 1.395 1.371 1.406 1.386 1.375 1.460 1.237 1.496 1.391 1.405 1.380 1.364 1.364 1.406 1.380	3 5	х	ŋ	.6795 .6578 .6795 .6081 .4038 .7610 .4485 .5949 .6831 .6081 .6081 .6831 .5949	 .6709 .6637 .6637 .6709 .6470 .2366 .8212 .4206 .6039 .6570 .6570 .6806 .6039 							
8	Pyridin	1-2 2-3 3-4	1.3394 1.3958 1.3936	1	МW	'g)	,6537 ,6694 ,6649	.6436 .6653 .6665	.653 .648 .676	ss)	.6694 .6558 .6722	tt)	.665 .661 .669	uu)	.647 vv) .663 .667
9	Pyridiniumnitrat	1 - 2 2 - 3 3 - 4	1.355 1.383 1.369	15	х	h)		.5424 .6869 .4609	.574 .695 .641	uu)	.505 .707 .622	ບບ)			
10	Pyridinium-tris- (o-phenylendioxy)- siliconat	$ \begin{array}{r} 1 - 2 \\ 2 - 3 \\ 3 - 4 \end{array} $	1.341 1.361 1.387	6 7 7	x	i)		.5424 .6869 .4609	,574 .695 .641	шu)	.505 .707 .622	uu)			
11	<i>N.N'</i> -Dimethyl- 4.4'-bipyridinium- tetrachloro- cuprat ⁴⁺	1-2 2-3 3-4 4-7	1.337 1,372 1.393 1.468	5 6 7	х	j)		.5403 .6899 .6092 .3629							

Tab. 5. Bindungslängen von stickstoffhaltigen Hetero- π -Systemen sowie deren mit verschiedenen Parametern berechnete HMO- und PPP- π -Bindungsordnungen

 $H_3C \sim N_{10} \xrightarrow{\phi} 10^{-5} 10^{-7} 10^{-7} CH_3$

					140	5 [1 0/13.	,						
Nr.	Verbindung	Bindung rs	Abstand Rrs [Å] Standard- abweichung $\sigma \cdot 10^3$ [Å]	Methode *)	Lit. HN	10**) F	π-B 1MO ***	indung *> PPP	sordnur Lit.	ngen p _{rs} PPP	Lit.	РРР	Lit.
12	Diaquat $(++)$	$ \begin{array}{r} 1 & -2 \\ 2 & -3 \\ 3 & -4 \\ 4 & -5 \\ 5 & -6 \\ 1 & -6 \\ 6 & -7 \\ \end{array} $	1.358 14 1.378 10 1.377 10 1.340 10 1.371 10 1.353 10 1.475 10	x	k)		.5529 .6705 .6533 .6520 .6453 .4962 .3788						
13	Pyrimidin $\int_{N_{y}}^{3} \int_{2}^{4} N_{y}$	1-2 1-6 4-5	1.335 7 1.355 1.395	x	1)	.6583 .6497 .6674	.6462 .6398 .6648	.623 .646 .654	ss)	.660 .675 .661	tt)	.633 .631 .663	vv)
14	Pyrazin $\left(\sum_{N=1}^{N} \right)_{2}^{3}$	1-2 2-3	1.334 15 1.378	x	m)	.6605 .6607	.6589 .6412	.669 .608	ss)	.675 .645	tt)	.660 .645	vv)
15	2.3.5.6-Tetra- methyl-pyrazin	$1-2 \\ 2-3$	1.337 10 1.434	x	n)	.6605 .6607	.6589 .6412	.669 .608	ss)	.675 .645	tt)	.660 .645	vv)
16	s-Triazin	12	1.338 1		0)	.6541	.6210	.616	ss)	.647	tt)	.623	vv)
17	2.3-Di-tertbutyl- chinoxalin ⁺⁺⁾ $\int_{V}^{0} \int_{V}^{1} \int_{X}^{K} \int_{R}^{1} R$	$ \begin{array}{r} 1 - 2 \\ 2 - 3 \\ 1 - 6 \\ 5 - 6 \\ 6 - 7 \\ 7 - 8 \\ 8 - 9 \end{array} $	1.316 6 – 10 1.475 1.359 1.393 1.420 1.367 1.401	X	p)		.7157 .5659 .5533 .5028 .5486 .7273 .5979						
18	Acridin $2 \longrightarrow_{1}^{2} \longrightarrow_{1}^{2} \longrightarrow_{10}^{2} \longrightarrow_{10}^{14} \longrightarrow_{12}^{14}$	$ \begin{array}{r} 1 - 2 \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 1 - 6 \\ 6 - 7 \\ 5 - 10 \end{array} $	1.358 4 1.426 5 1.357 4 1.427 3 1.432 3 1.432 4 1.395 4 1.345 3	x	q)	.7358 .5884 .7332 .5430 .4882 .5362 .6028 .5853	.7352 .5888 .7328 .5406 .4861 .5367 .6028 .5755	.842 .443 .870 .381 .528 .426 .636 .628	SS)	.810 .496 .809 .456 .508 .455 .632 .605	tt)	.704 .534 .704 .484 .516 .478 .615 .611	ww)
19	α -Phenazin $(1-1)^{2} + (1-$	1 - 2 2 - 3 5 - 6 1 - 6 6 - 7	1.367 4 1.422 1.439 1.421 1.346	x	r)	.7376 .5828 .4781 .5359 .6006	.7418 .5762 .4604 .5270 .6049	.865 .421 .505 .369 .652	ss)				
20	N-Methyl-phen- aziniumtetra- cyanochinodi- methanid ++; $2 \bigoplus_{i=1}^{2} \bigoplus_{\substack{i=1 \\ i \in I}}^{2} \bigoplus_{i=1}^{N_{i}} \bigoplus_{i=1}^{M_{i}} \bigoplus_{i=1}^{N_{i}} \bigoplus_{i=1}^{N_{i}}$	$ \begin{array}{r} 1 - 2 \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 1 - 6 \\ 6 - 7 \\ 5 - 10 \end{array} $	1.364 5 1.406 6 1.360 5 1.412 5 1.428 6 1.393 5 1.360 5 1.356 5	x	s)		.7439 .5745 .7375 .5381 .4559 .5215 .6135 .5735						

Tab. 5 (Forts.)

				20												
Nr.	Verbindung	Bindung rs	Abstand Rrs [Å] Standard-	abweichung $\sigma \cdot 10^3$ [Å]	Methode *)	Lit.	HMO**)	нмо**	π-Bin *> PPP	ndungso 'Lit.	ordnunge PPP	n p _{rs} Lit.	PPP	Lit.	PPP	Lit.
21	asymm α . β - Naphtharazin	1-22-33-44-55-66-77-88-99-105-1010-1111-122-11	1.349 1.438 1.370 1.456 1.426 1.392 1.410 1.407 1.419 1.446 1.430 1.335 1.414	17 17 20 16 19 17 19 21 17 18 19 15 15	x	t)		.5972 .4999 .7778 .4944 .5817 .6993 .6287 .6940 .5969 .5444 .4474 .6208 .6993								
22	1.2: 8.9-Dibenz- acridin $i \rightarrow i \rightarrow i \rightarrow i$	$\begin{array}{c} 1 - 2 \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 1 - 6 \\ 6 - 7 \\ 7 - 8 \\ 8 - 9 \\ 9 - 10 \\ 5 - 10 \\ 8 - 14 \\ 7 - 11 \end{array}$	1.385 1.403 1.386 1.412 1.428 1.418 1.442 1.428 1.440 1.371 1.426 1.405 1.358	3	x	u)	.6983 .6255 .7028 .5791 .5427 .5921 .4580 .5161 .4981 .7793 .4991 .6090 .6054	.6983 .6255 .7029 .5791 .5430 .5926 .4548 .5135 .4984 .7792 .4991 .6096 .5960								
23	Tricyclochin- azolin V N N N N N N N N N N	1 - 2 $2 - 3$ $3 - 4$ $4 - 5$ $5 - 6$ $3 - 7$ $7 - 8$ $8 - 9$ $9 - 10$ $4 - 10$	1.425 1.460 1.395 1.397 1.397 1.397 1.397 1.394 1.371 1.394 1.385 1.401	7 13 5 8 7 10 4 5 6	x	v)	.4010 .4517 .5398 .4748 .6780 .6001 .6883 .6327 .6919 .5919	.4486 .4457 .5399 .4841 .6384 .5990 .6922 .6296 .6975 .5826								
24	Pyrrol , (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$ \begin{array}{ccc} 1 & 2 \\ 2 & 3 \\ 3 & -4 \end{array} $	1.374 1.381 1. 4 17	5	мw	'w)	.4395 .7903 .5528	.5003 .7543 .5838	.326 .881 .426	55)	.472 .790 .541	tt)	.3966 .8411 .4771	xx)	.39: .82: .51:	3 yy) 3 5
25		1 - 2 2-3 3-4 4-5 1-5	1.349 1.326 1.378 1.358 1.369	5	x	x)	.4872 .7589 .5289 .8054 .4306	.5559 .7023 .5466 .7768 .4883	. 372 .817 .495 .846 .349	ss)	.451 .829 .425 .879 .345	zz)	.479 .777 .558 .777 .480	aaa)	
26	Imidazol	1-2 2-3 3-4 4-5 1-5	1.340 1.317 1.384 1.314 1.386	5	x	у)	.4872 .7589 .5289 .8054 .4306	.5559 .7023 .5466 .7768 .4883	.372 .817 .495 .846 .349	ss)	.451 .829 .425 .879 .345	zz)	.479 .777 .558 .777 .480	aaa)	

Tab. 5 (Forts.)

2911

					Tab.	5 (Forts	.)						
Nr.	Verbindung	Bindung rs	Abstand Rrs [Å] Standard- abweichung	Methode *)	Lit. H	MO**)	π-B HMO***	indung PPP	sordnur Lit.	igen p _{rs} PPP	Lit.	PPP	Lit.
27	Histidinhydro- chlorid-mono- hydrat ++) R HN NH	1-2 2-3 3-4 4-5 1-5	1.314 11 1.319 1.386 1.358 1.359	x	z)		.5998 .5998 .4383 .8295 .4383						
28	Histamindi- phosphat-mono- hydrat ++)	1 - 2 2-3 3-4 4-5 1-5	1.314 4 1.332 1.379 1.349 1.373	x	aa)		.5998 .5998 .4383 .8295 .4383						
29	Indolyl-(3)-essig- siture ++) $ \oint_{c} \int_{H_{1}} \int_{L_{2}} H$	$ \begin{array}{r} 12 \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 1 - 5 \\ 5 - 6 \\ 6 - 7 \\ 7 - 8 \\ 8 - 9 \\ 4 - 9 \\ 4 - 9 \end{array} $	1.401 15 1.342 1.470 1.407 1.385 1.422 1.409 1.396 1.409 1.409 1.434	х	ԵԵ)	.4047 .8242 .4776 .5702 .3632 .6203 .6895 .6333 .7011 .5829	.4751 .7870 .5034 .5521 .4259 .5973 .7000 .6244 .7079 .5741	.234 .932 .427 .659 .217 .619 .704 .625 .710 .596	ss)	.404 .834 .435 .597 .432 .577 .722 .604 .726 .573	tt)		
30	Carbazol $ \underbrace{(x_{i}, y_{i})}_{H}, \underbrace{(x_{i}, $	$ \begin{array}{r} 1-2 \\ 2-3 \\ 3-4 \\ 4-5 \\ 5-6 \\ 6-7 \\ 2-7 \\ 7-8 \\ \end{array} $	1.414 8 1.395 1.390 1.398 1.395 1.400 1.404 1.467	x	cc)	.3371 .6282 .6820 .6432 .6888 .6046 .5848 .4183	.4042 .6060 .6912 .6359 .6931 .5996 .5675 .4312	.377 .598 .704 .624 .704 .604 .602 .364	tt)	.174 .648 .682 .648 .687 .625 .648 .284	ss)		
31] t:k	6-Dimethyl- amino-5-aza- azulen ++) b b c c c c c c c c c c c c c c c c c	$ \begin{array}{r} 1-2\\2-3\\3-4\\4-5\\5-6\\6-7\\7-8\\8-9\\9-10\\4-10\\8-11\end{array} $	1.396 4 1.406 1.399 1.447 1.422 1.393 1.332 1.332 1.347 1.435 1.370 1.404 1.356	x	dd)	.6628 .6517 .6041 .4180 .5913 .5773 .6704 .5747 .5824 .6981 .5599 .3845	.6671 .6482 .6097 .4259 .5887 .5706 .6624 .5460 .5446 .7185 .5458 .4734	.6817 .6435 .6231 .4015 .5767 .4376 .6905 .4376 .4454 .7628 .5179 .7531	ხხხ)				
32]		1-2 2-3 3-4 4-5 5-6 5-7 7-8 8-9 4-9 1-6	1.349 6 1.324 1.336 1.398 1.393 1.375 1.375 1.313 1.369 1.330	x	ee)	.6325 .6869 .5660 .5692 .6346 .3519 .4788 .7656 .4808 .6595	.6194 .6759 .5493 .5483 .6187 .4086 .5631 .6965 .5042 .6500	.599 .723 .573 .589 .573 .411 .450 .817 .456 .728	aaa)				
33	9-Methyl- adenin $(1,1)^{(N)}$	1 - 2 - 3 - 4 - 5 - 5 - 6 - 6 - 7 - 8 - 9 - 6 - 10	1.348 8 1.322 9 1.338 10 1.365 9 1.395 10 1.348 11 1.379 11 1.379 11 1.374 10 1.354 10 1.359 10 1.348 9	x	ff)	.6273 .6860 .5521 .5728 .5581 .6307 .4739 .7526 .4490 .5150 .3473	.6203 .6708 .5358 .5838 .5285 .5927 .4734 .7315 .4539 .5238 .6408	.594 .686 .531 .594 .495 .632 .491 .769 .453 .485 .435	ccc)	.611 .712 .573 .600 .511 .683 .472 .811 .423 .450 .372	aaa)		

29	1	3
_	•	~

			N									
Nr.	Verbindung	Bindung rs	Abstand Rrs [Å] Standard- abweichung σ·10 ³ [Å] Methode *)	Lit,	HMO**)	π HMO*	-Bindur **) PPF	igsordni Lit.	ungen <i>p</i> 1 PPP	s Lit.	ррр	Lit,
34	9-Methyl-adenin, Komplex mit 1-Methyl- thymin *+)	$ \begin{array}{r} 1 - 2 \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 1 - 6 \\ 5 - 7 \\ 7 - 8 \\ 8 - 9 \\ 4 - 9 \\ 6 - 10 \\ \end{array} $	1.361 5 X 1.304 1.347 1.347 1.347 1.335 1.406 1.355 1.381 1.323 1.363 1.363 1.389 1.335 1.335 1.335	gg)	.6273 .6860 .5521 .5728 .5581 .6307 .4739 .7526 .5150 .4490 .3473	.6203 .6708 .5358 .5838 .5285 .5927 .4734 .7315 .5238 .4539 .4408	.594 .686 .531 .594 .495 .632 .491 .769 .485 .453 .435	ccc)	.611 .712 .573 .600 .511 .683 .472 .811 .450 .423 .372	aaa)		
35	Adenosin-3'- phosphat- dihydrat **)	$ \begin{array}{r} 1-2\\ 2-3\\ 3-4\\ 4-5\\ 5-6\\ 1-6\\ 5-7\\ 7-8\\ 8-9\\ 4-9\\ 6-10\\ \end{array} $	1.349 6 X 1.306 1.353 1.381 1.401 1.363 1.384 1.312 1.355 1.319	hh)	.6273 .6860 .5521 .5728 .5581 .6307 .4739 .7526 .5150 .4490 .3473	.6203 .6708 .5358 .5838 .5927 .4734 .7315 .5238 .4539 .4408	.594 .686 .531 .594 .495 .632 .491 .769 .485 .453 .435	ccc)	.611 .712 .573 .600 .511 .683 .472 .811 .450 .423 .372	aaa)		
36	Desoxyadenosin- monohydrat *+)	1 - 2 $2 - 3$ $3 - 4$ $4 - 5$ $5 - 6$ $1 - 6$ $5 - 7$ $7 - 8$ $8 - 9$ $4 - 9$ $6 - 10$	$\begin{array}{ccccc} 1.317 & 8-10 & 1\\ 1.326 \\ 1.346 \\ 1.392 \\ 1.414 \\ 1.336 \\ 1.375 \\ 1.307 \\ 1.361 \\ 1.369 \\ 1.331 \end{array}$	K ii)) .6273 .6860 .5521 .5728 .5581 .6307 .4739 .7526 .5150 .4490 .3473	.6203 .6708 .5358 .5838 .5285 .5927 .4734 .7315 .5238 .4539 .4408	.594 .686 .531 .594 .495 .632 .491 .769 .485 .453 .435	ccc)	.611 .712 .573 .600 .511 .683 .472 .811 .450 .423 .372	asa)		
37	I-Methylamino- 7-methylimino- cycloheptatrien- (1.3.5) $\stackrel{++}{\rightarrow}$	$ \begin{array}{r} 1-2 \\ 2-3 \\ 3-4 \\ 4-5 \\ 5-6 \\ 6-7 \\ 1-7 \\ 1-8 \\ 7-9 \\ \end{array} $	1.420 6 X 1.386 1.378 1.383 1.393 1.407 1.400 1.337 1.334	jj)	.6783 .6063 .6876 .5961 .7129 .5257 .4668 .3507 .6391	.6052 .6602 .6445 .6445 .6602 .6052 .4764 .4853 .4854						
38	Anilin	$1-2 \\ 2-3 \\ 3-4 \\ 4-5$	1.431 M [*] 1.392 1.392 1.392	₩ kk)		.3633 .6199 .6764 .6603	.355 .623 .673 .662	tt)	.254 .645 .670 .665	ddd)		
39	<i>p</i> -Chlor-anilin [*] Cl-	1-2 2-3 3-4 4-5 5-8	1.386 25 X 1.424 21 1.394 18 1.400 21 1.749 19	11)		,3600 .6207 .6756 .6567 .1136						
40	2.5-Dichlor- anilin ${}^{\circ C1} \underbrace{\overset{\circ}{\underset{\scriptstyle J}{\overset{\circ}{\underset{\scriptstyle J}{\overset{\circ}{\underset{\scriptstyle J}{\overset{\circ}{\underset{\scriptstyle J}{\underset{\scriptstyle J}{\overset{\circ}{\underset{\scriptstyle J}{\underset{\scriptstyle J}{\overset{\circ}{\underset{\scriptstyle J}{\underset{\scriptstyle J}{\overset{\circ}{\underset{\scriptstyle J}{\underset{\scriptstyle J}{\atopJ}{\underset{\scriptstyle J}{\underset{\scriptstyle J}{\atopJ}{\underset{\scriptstyle J}{\atopJ}{\atopJ}{\underset{J}{\atopJ}{\atopJ}{\atopJ}{\atopJ}{I}}}}}}}}}}}}}}}}}}}$	$ \begin{array}{r} 1 - 2 \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 6 - 7 \\ 2 - 7 \\ 3 - 8 \\ 6 - 9 \end{array} $	1.407 16 X 1.423 17 1.360 17 1.378 17 1.400 17 1.388 17 1.398 17 1.744 12 1.743 12	ານ ມາ)) .509 .555 .677 .645 .634 .657 .625 .213 .251	.3598 .6154 .6730 .6600 .6561 .6236 .6692 .1113 .1219						

Tab. 5 (Forts.)

						1 40	. 5 (roris.)							
Nr.	Verbindung	Bindung rs	Abstand R _{rs} [Å] Standard-	abweichung σ·10 ³ [Å]	Methode *)	Lit.	HMO**)	π-Bind HMO***	ungsore	dnungen Lit.	Prs PPP	Lit.	РРР	Lit.
41	N.N.N'.N'-Tetra- methyl-p-pheny- lendiamin ⁺⁺⁾	$1-2 \\ 2-3 \\ 3-4$	1.365 1.416 1.374	7 7 10	x	nn)		.3397 .6238 .6738	.334 .626 .670	tt)				
(C	$H_3)_2 N \xrightarrow{4}_{6} \sum_{7}^{J} N(CH_3)_2$													
4 2 н	$\begin{array}{c} \rho\text{-Tolidin} \stackrel{++)}{} \\ H_3C \\ 2^N \\ 2^N \\ 4^{1^\circ} \\ 4^{1^\circ} \\ CH_3 \end{array}$	$ \begin{array}{r} 1 - 2 \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 6 - 7 \\ 2 - 7 \\ 5 - 8 \end{array} $	1.433 1.427 1.415 1.357 1.418 1.414 1.359 1.504	12 18 13 22 17 13 22 13	x	00)	.2933 ⁺⁾ .6304 .6834 .6139 .6139 .6834 .6304 .3737	,2194 .6464 .6763 .6356 .6356 .6763 .6464 .2897						
43	Guanidinium- chlorid H_2N \bigcirc \bigcirc H_2N $C = NH_2$ H_2N \downarrow 2	1-2	1.323	5	x	pp)	.5201	.5456						
44	Guanidinium- aluminiumsulfat	1-2	1.326	5	x	qq)	.5201	.5456						
45	Guanidinium- chromsulfat	12	1.344	7	x	qq)	.5201	.5456						
46	Porphin $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$ \begin{array}{r} 1 & -2 \\ 2 & -3 \\ 2 & -17 \\ 3 & -4 \\ 4 & -5 \\ 4 & -24 \\ 23 & -24 \\ 17 & -18 \\ \end{array} $	1.367 (.386 1.442 1.386 1.367 1.442 1.342 1.342	4	x	rr)	.3697 .6193 .5692 .5726 .5511 .4885 .7757 .7112	.4347 .6025 .5444 .5732 .5380 .4963 .7722 .7358	.439 .627 .489 .600 .605 .350 .873 .788	ece)	.364 .631 .524 .588 .591 .388 .853 .769	fff)		
47	2-p-Toluidino- naphthalin- sulfonat-(6) ++) 10^{+0} 10^{-10}	$\begin{array}{c} 1-2\\ 2-3\\ 3-4\\ 4-5\\ 5-6\\ 1-6\\ 6-7\\ 7-8\\ 8-9\\ 9-10\\ 10-11\\ 11-12\\ 12-13\\ 13-14\\ 14-15\\ 15-16\\ 16-17\\ 8-17\\ \end{array}$	$\begin{array}{c} 1.387\\ 1.383\\ 1.389\\ 1.380\\ 1.385\\ 1.397\\ 1.402\\ 1.397\\ 1.402\\ 1.373\\ 1.410\\ 1.418\\ 1.362\\ 1.416\\ 1.362\\ 1.416\\ 1.427\\ 1.415\\ 1.427\\ 1.415\\ 1.359\end{array}$	3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x	888)	,	.6745 .6614 .6745 .6296 .3186 .3283 .7345 .5627 .5524 .7244 .6034 .7220 .5584 .5147 .5488 .7347 .5669						

*) Strukturbestimmungsmethoden: MW == Mikrowellenspektroskopie, E = Elektronenbeugung, X == dreidimensionale Röntgenstrukturbestimmung, N = Neutronenbeugung.**) Streitwieser-Parameter. ***) Neue Heteroatomparameter (12).

H₃Cᢤ

+) Planare Struktur angenommen.
 ++) Alkylsubstituenten bei der Berechnung nicht berücksichtigt.

a) B. F. Pedersen, Acta chem. scand. 21, 1415 (1967).
b) A. Camerman, L. H. Jensen und A. T. Balaban, Acta crystallogr. [Copenhagen] B 25, 2623 (1969).
c) K. V. L. N. Sastry und R. F. Curl, J. chem. Physics 41, 77 (1964).
d) R. L. Hilderbrandt, A. L. Andreassen und S. H. Bauer, Acta crystallogr. [Copenhagen] A 25, S 152 (1969).

- e) M. Nardelli und G. Fava, Acta crystallogr. [Copenhagen] 15, 214 (1962).
- f) H. B. Bürgi und J. D. Dunitz, Chem. Commun. 1969, 472
- g) B. Bak, J. L. Mahler, L. Nygaard und S. O. Sörensen, zitiert in Acta chem. scand. 22, 607 (1968).
- [5] D. Dur, B. L. Minner, J. Fryguna Und E. A. Meyers, J. physic. Chem. 69, 1915 (1965).
 [6] J. J. Flynn und F. P. Baer, I. Amer. chem. Soc. 91, 5756 (1969).
 [6] J. H. Russell und S. C. Walkwerk, Acta crystallogr. [Copenhagen] B 25, 1691 (1969).
 [6] J. E. Derry, Nature [London] 221, 464 (1969).

- k) J. E. Derry, Nature [London] 221, 464 (1969).
 l) P. Wheatley, Acta crystallogr. [Copenhagen] 13, 80 (1960).
 m) P. Wheatley, Acta crystallogr. [Copenhagen] 10, 182 (1957).
 n) D. T. Cromer, J. physic. Chem. 61, 254 (1957).
 o) E. B. Lancaster und B. P. Stoicheff, Canad. J. Physics 34, 1016 (1956).
 o) G. J. Visser, A. Vos, A. de Groot und H. Wynberg, J. Amer. chem. Soc. 90, 3253 (1968).
 q) D. C. Phillips, F. R. Almed und W. H. Barnes, Acta crystallogr. [Copenhagen] 13, 365 (1960).
 r) F. L. Hirshfeld und G. M. J. Schmidt, J. chem. Physics 26, 923 (1957).
 s) C. F. Friichie Jr. Acta crystallopr. [Copenhagen] 20, 892 (1965).
- s) C. F. Fritchie Jr., Acta crystallogr. [Copenhagen] 20, 892 (1966). t) B. Bovio und S. Lochi, Z. Kristallogr. 121, 306 (1965).
- u) R. Mason, Nature [London] 179, 465 (1957).
- v) J. Iball und W. D. S. Motherwell, Acta crystallogr. [Copenhagen] B 25, 882 (1969).
 w) B. Bak, D. Christensen, L. Hansen und J. Rastrup-Andersen, J. chem. Physics 24, 720 (1956).
- x) S. Martinez-Carrera, Acta crystallogr. [Copenhagen] 20, 783 (1966).
- y) G. Will, Z. Kristallogr. 129, 211 (1969)
- z) J. Donohue und A. Caron, Acta crystallogr. [Copenhagen] 17, 1178 (1964).
- aa) M. V. Veidis, G. J. Palenik, R. Schaffrin und J. Trotter, J. chem. Soc. [London] A 1969, 2659.
 bb) I. L. Karle, K. Britts und P. Gum, Acta crystallogr. [Copenhagen] 17, 496 (1964).
 cc) B. N. Lahiri, Acta crystallogr. [Copenhagen] A 25, S 127 (1969).

- dd) H. J. Lindner, Chem. Ber. 102, 2464 (1969).
- ee) D. G. Watson, R. M. Sweet und R. E. Marsh, Acta crystallogr. [Copenhagen] 19, 573 (1965), ff) R. F. Stewart und L. H. Jensen, J. chem. Physics 40, 2071 (1964).
- gg) K. Hoogsteen, Acta crystallogr. [Copenhagen] 16, 907 (1963).
- h) M. Sundaralingam, Acta crystallogr. [Copenhagen] 21, 495 (1966).
 ii) D. G. Watson, D. J. Sutor und P. Tollin, Acta crystallogr. [Copenhagen] 19, 111 (1965).
- jj) P. Goldstein und K. N. Trueblood, Acta crystallogr. [Copenhagen] 23, 148 (1967).
 kk) D. G. Lister und J. K. Tyler, Chcm. Commun. 1966, 152.

- kk) D. G. Lister und J. K. Tyler, Chem. Commun. 1966, 152.
 l) J. Trotter, S. H. Whitlow und T. Zabel, J. chem. Soc. [London] A 1966, 353.
 mm) T. Sakwi, M. Sundaralingam und G. A. Jeffrey, Acta crystallogr. [Copenhagen] 16, 354 (1963).
 nn) A. W. Hanson, Acta crystallogr. [Copenhagen] 19, 610 (1965).
 oo) S. A. Chawdhury, A. Harris und H. H. Mills, Acta crystallogr. [Copenhagen] 19, 676 (1965).
 qq) B. J. B. Schein, E. C. Lingafelter und J. M. Stewart, J. chem. Physics 47, 5183 (1967).
 rr) L. E. Webb und E. B. Fleischer, J. Amer. chem. Soc. 87, 667 (1965).
 ss) M. J. S. Dewar und G. J. Gleicher, J. chem. Physics 44, 759 (1966).
 t) L. Fierker-Hindmars und M. Sundhow Acta crys 44, 729 (1966).

- tt) I. Fischer-Hjalmars und M. Sundbom, Acta chem. scand. 22, 607 (1968). uu) K. Nishimoto, Theoret. chim. Acta [Berlin] 10, 65 (1968).

- (u) A. Nishtimoto, Infected Chim, Seta (Definit) 19, 97 (1980).
 (v) P. Lindner, R. Manne und O. Martensson, Theoret, chim. Acta [Berlin] 5, 406 (1966).
 (v) K. Nishimoto und L. S. Forster, Theoret, chim. Acta [Berlin] 4, 155 (1966).
 (v) P. Chiorboli, A. Rastelli und F. Monicchioli, Theoret, chim. Acta [Berlin] 5, 1 (1966).
- yy) A. Julg und P. Carles, Theoret. chim. Acta [Berlin] 7, 103 (1967). zz) H. Chojnacki, Theoret. chim. Acta [Berlin] 12, 373 (1968).

- aa) I. Fischer-Hjälmars und J. Nay-Chandhuri, Act a chem. scand. 23, 2963 (1969).
 bbb) U. Müller-Westerhoff und K. Hafner, Tetrahedron Letters [London] 44, 4341 (1967).
 ccc) S. Fraga und C. Valdemoro, Structure and Bonding, Vol. 4, S. 27 Springer-Verlag, Berlin 1968.
 ddd) I. Fischer-Hjälmars, Ark. Fysik 21, 123 (1962).
- eee) M. Sundbom, Acta chem. scand. 22, 1317 (1968).
- fff) C. Weiss, H. Kobayashi und M. Gouterman, J. molecular Spectroscopy 10, 415 (1965).
- ggg) A. Camerman und L. H. Jensen, Science [Washington] 165, 493 (1969).

In Abbild, 2 sind diese Werte gegenseitig aufgetragen. Die Gleichung (6) der nach der Methode der kleinsten Fehlerquadrate bestimmten Ausgleichsgerade*) beträgt

$$R_{\rm rs}[{\rm \AA}] = 1.452 - 0.179 \, p_{\rm rs} \tag{6}$$

mit einer Standardabweichung von 0.024 Å für 80 Punkte und einem Korrelationskoeffizienten von 0.792.

Die Genauigkeit von Beziehung (6) läßt sich kaum mit der bei den CC-Bindungen mit HMO-Berechnungen erreichten Genauigkeit von Gleichung (7) vergleichen.

$$R_{\rm rs}^{\rm CC} [\rm{\AA}] = 1.585 - 0.295 \, p_{\rm rs} \tag{7}$$

Für (7) beträgt die Standardabweichung 0.017 Å mit einem Korrelationskoeffizienten von 0.895 bei 136 Punkten. Daher wurde versucht, durch die Wahl neuer Heteroatomparameter eine Verbesserung der Beziehung (6) zu erhalten.

^{*)} FORTRAN-Programm von G. Häfelinger.

Bestimmung neuer Heteroatomparameter

Nach der störungstheoretischen Behandlung der HMO-Methode ^{47,37c)} bewirkt die Änderung eines Coulombintegrals um $\Delta a = h_X \beta$ eine Änderung der Bindungsordnung Δp_{rs} , deren Größe durch die Bindungs-Atompolarisierbarkeit $\pi_{rs,1}$ nach Gleichung (8) bestimmt wird.

$$\Delta \rho_{\rm rs} = \pi_{\rm rs,1} \,\Delta a_{\rm t} \tag{8}$$

$$\Delta p_{\rm rs} = \pi_{\rm tu, rs} \,\Delta \beta_{\rm tu} \tag{9}$$

Nach Gleichung (9) führt eine Änderung der Resonanzintegrale um $\Delta \beta_{t_u} = (k_{C-X^{-1}})\beta zu$ einer Änderung der Bindungsordnung p_{rs} zwischen den Atomen r und s, die von der Größe der Bindungs-Bindungspolarisierbarkeit $\pi_{t_u, rs}$ abhängt.

Die HMO- π -Bindungsordnung-Bindungslängen-Beziehung (7) für CC-Bindungen muß auch für CC-Abstände in Heterocyclen gültig sein. Setzt man die experimentell bestimmten CC-Abstände der Heteroverbindungen von Tab. 5 in Gleichung (7) ein, so erhält man einen Satz von Bindungsordnungen p_{rs}^{exp} , die bei richtiger Wahl der Heteroatomparameter mit den berechneten HMO-Bindungsordnungen p_{rs}^{HMO} übereinstimmen sollten.

Die Abweichung $\Delta p_{rs} = p_{rs}^{exp} p_{rs}^{HMO}$ der mit den Heteroatomparametern von *Streitwieser*^{37b} berechneten Bindungsordnungen p_{rs}^{HMO} von den mit Gleichung (7) bestimmten experimentellen Bindungsordnungen p_{rs}^{exp} ergibt nach Division durch die mit denselben Parametern berechneten Polarisierbarkeiten $\pi_{rs,t}$ bzw. $\pi_{tu,rs}$ die Störungen Δa_t bzw. $\Delta \beta_{tu}$. Daraus können sofort die Heteroparameter h_X bzw. k_{CX} erhalten werden.

Die Bindungs-Atompolarisierbarkeiten $\pi_{rs,t}$ sind durchschnittlich nur 1/10 der Bindungs-Bindungspolarisierbarkeiten $\pi_{tu,rs}$. D. h. die Bindungsordnungen sind stärker durch eine Änderung der Resonanzintegrale als durch eine Änderung der Coulombintegrale betroffen. Die hier vorgeschlagene Methode ist somit in Anbetracht der experimentellen Fehler der Bindungslängenbestimmung schlecht zur Bestimmung der Coulombparameter h_X geeignet. Sie eignet sich aber dafür umso besser zur Bestimmung der Bindungsparameter k_{CX} , die durch Vergleich zwischen Berechnung und Experiment für andere experimentelle Größen (UV-Spektren, Dipolmomente, Reaktivitäten) nur schlecht zugänglich sind 37d).

In Tab. 6 sind die zur Bestimmung der k_{C-N} -Werte benötigten Größen zusammengestellt.

Die Mittelung der mit einem unterschiedlichen Fehler behafteten Größen $\Delta\beta_{rs}$ geschieht mit Hilfe der statistischen Formeln⁴⁸⁾ (10) und (11).

$$\overline{\Delta \beta} = \frac{\sum_{i} \Delta \beta_{i}}{\sum_{i} \frac{1}{\sigma_{i}^{2}}}$$
(10)

⁴⁷⁾ C. A. Coulson und H. C. Longuet-Higgins, Proc. Roy. Soc. [London], Ser. A **191**, 39 (1947); Ser. A **193**, 447 (1948).

⁴⁸⁾ L. E. Sutton, "Tables of Interatomic Distances and Configuration in Molecules and Iones", Special Publication No. 11 of the Chemical Society, Barlington House, London 1968.

$$\overline{\sigma} = \sqrt{\frac{1}{\sum_{i} \frac{1}{\sigma_i^2}}}$$
(11)

Man erhält damit $k_{C-N} = 1.08 \pm 0.03$. Dieser Wert ist in guter Übereinstimmung mit dem von *Derflinger* und *Lischka*³⁹⁾ angegebenen Wert von 1.06. Die Werte zur Bestimmung der Einfachbindungsparameter k_{C-N} sind in Tab. 7 zusammengestellt. Die Mittelung nach (10) u. (11) ergibt $k_{C-N} = 1.00 \pm 0.2$. Dieser Wert ist kleiner als der von *Derflinger* und *Lischka*³⁹⁾ abgeleitete Wert von 1.30. Es ist jedoch sinnvoll, daß der Einfachbindungsparameter kleiner als der der aromatischen Bindungen und Doppelbindungen ist.

Die HMO-Berechnung wurde nun mit den neuen Parametern (12) durchgeführt:

$$h_{-N-} = 0.8 \quad k_{C-N} = 1.1$$

$$h_{-N-} = 1.5 \quad k_{C-N} = 1.0 \quad (12)$$

$$h_{-N-} = 2.0 \quad k_{C-} = 0 \quad (12)$$

Verbindung	Bindung rs	$p_{\rm rs}^{\rm HMO}$	$P_{\rm rs}^{\rm exp}$	$ \begin{pmatrix} p_{rs} \\ p_{rs}^{exp} - p_{rs}^{HMO} \end{pmatrix} $	$\pi^{\text{HMO}} = (\pi_{\text{rs, C}_1\text{N}} + \pi_{\text{rs, C}_2\text{N}})$	$\frac{\Delta \beta_{\rm rs}}{\pi^{\rm HMO}} = \frac{\Delta p_{\rm rs}}{\pi^{\rm HMO}}$	Fchler = $\frac{3\sigma_{R_{rs}}}{0.295 \cdot \pi^{HMO}}$
Pyridin	$2-3 \\ 3-4$.6694 .6649	.635 .646	034 019	3884 .0405	.088 45	.026 .25
					Mi	ttel: .082	$\pm.026$
Pyrimidin	45, 5-6	.6674	.640	027	0380	71	1.1.87
Pyrazin	23	.6607	.698	.037	.0668	.56	± 2.28
Acridin Phenazin	1 - 22 - 33 - 44 - 55 - 61 - 66 - 71 - 2, 3 - 42 - 35 - 61 - 6, 4 - 5	.7358 .5884 .7332 .5430 .4882 .5362 .6028 .7376 .5828 .4781 .5359	.764 .535 .767 .533 .515 .515 .640 .733 .550 .492 .552	.028 053 .034 010 .027 021 .037 005 033 .014 .016	.0127 1369 .0476 1177 0634 0056 .0410 Mi .0436 0326 1024 1053	$\begin{array}{c} 2.21 \\ .39 \\ .71 \\ .85 \\43 \\ 3.75 \\ .90 \\ \text{mel:} .55 \\115 \\ 1.01 \\152 \\157 \\152 \\177 \\18$	$3.19 .372 .259 .48 7.1 .98 \pm .19.931.25.396.386.386$
Dibenzaeridin	1-22-33-44-55-61-66-77-88-99-105-108-14	.6983 .6255 .7028 .5791 .5921 .4580 .5161 .4981 .7793 .4991 .6090	.674 .613 .660 .583 .527 .562 .481 .529 .488 .720 .535 .605	024 013 043 .004 016 030 .023 .012 010 059 .036 004		$\begin{array}{c} .245 \\ -65. \\ 43. \\ 5.7 \\89 \\ -1.16 \\23 \\189 \\ .715 \\ -22.7 \\113 \\ el:255 \\ eret: 0.082 \end{array}$	$\pm .26$ 3.12 153. 30.5 1.69 1.18 48 2.18 11.75 2.78 865 $\pm .238$ $\pm .238$

Tab. 6.	Werte	zur Best	immung des	Heteroatom	parameters	kc=N
---------	-------	----------	------------	------------	------------	------

Als Coulombintegral-Parameter h_X wurden die Werte von *Derflinger* und *Lischka*³⁹⁾ übernommen, die nach der Methode der kleinsten Fehlerquadrate aus dem Vergleich

Verbindung	Bindung rs	p_{rs}^{HMO}	P_{rs}^{exp}	$\begin{array}{l} \Delta p_{\rm rs} = \\ \left(p_{\rm rs}^{\rm exp} - p_{\rm rs}^{\rm HMO} \right) \end{array}$	$\pi^{\text{HMO}} =$ $(\pi_{\text{rs, C}_1\text{N}} + \pi_{\text{rs, C}_2\text{N}})$	$\frac{\Delta \beta_{\rm rs}}{\pi^{\rm HMO}} = \frac{\Delta p_{\rm rs}}{\pi^{\rm HMO}}$	$\frac{\text{Fehler}}{\frac{3 \sigma_{R_{rs}}}{0.295 \cdot \pi^{HMO}}}$
Pyrrol	2-3	.7903	.688	102	- 1854	553	373
	3 4	.5528	.566	.013	.1671 Mittel	.078	.304
Indol	2 - 3	.8242	.817		- 1832	038	922
	3-4	.4776	.387	091	.1327	- 686	1 15
	4 5	,5702	.600	.030	0873	- 344	1.15
	5~6	.6203	.550	070	.1150	610	1.33
	6-7	.6895	.593	107	.0550	1.95	2.77
	7-8	.6333	,636	.003	0462	065	3.31
	8-9	.7011	,593	118	0368	-3.20	4.15
	4-9	.5829	.508	.075	.0467	1.62	3.27
					Mittel	:16	
Carbazol	2 - 3	.6282	.642	.014	1068	131	.76
	34	.6820	.657	.025	.0454	548	1.79
	45	.6432	.630	013	0358	.363	2.27
	56	.6888	.642	.046	.0222	-2.07	3.66
	6.7	.6046	.623	.017	0260	654	3.12
	78	.4133	.397	.016	.0887	180	.915
	2 7	.5848	.610	.025		309	1.005
					Mittel	22	±.18
				Mittely	vert $\Delta\beta = (k_{C}^{\text{neu}})$	0.8)	$= 0.20 \pm 0.18$

Tab. 7. Werte zur Bestimmung des Heteroatomparameters k_{C-N}

zwischen beobachteten und berechneten Lichtabsorptionsspektren bestimmt wurden, da eine Änderung der Coulombintegral-Parameter die Orbitalenergien und damit die Elektronenanregungsenergien wesentlich stärker betrifft als die Bindungsordnungen. In Kombination mit den neuen Resonanzintegral-Parametern k_{CX} sollten die HMO-Berechnung sowohl für Grundzustandseigenschaften, wie die Bindungsordnungen, als auch für die Elektronenanregungsenergien optimiert sein. Störungen der Planarität, d. h. Verdrillungen um einen Winkel Θ um eine Einfachbindung wurden durch Änderung des betreffenden Resonanzintegrals nach (13) berücksichtigt^{37e)}.

$$\beta_{\Theta} = \beta_0 \cos \Theta \tag{13}$$

Die damit erhaltenen Bindungsordnungen sind in Tab. 5 zusammengestellt und in Abbild. 3 graphisch dargestellt. Die Ausgleichsgerade nach der Methode der kleinsten Fehlerquadrate hat die Gleichung (14) mit einer Standardabweichung von 0.019 Å und

$$R_{\rm rs}^{\rm HMO} \,[{\rm A}] = 1.474 - 0.225 \, p_{\rm rs} \tag{14}$$

einem Korrelationskoeffizienten von 0.865 für 114 Punkte.

Sowohl die Standardabweichung als auch der Korrelationskoeffizient sind gegenüber (6) verbessert. Dies zeigt, daß die neuen Parameter (12) besser als die *Streitwieser*-Parameter^{37b)} zur Berechnung der Grundzustandseigenschaften geeignet sind.

PPP-SCF-π-Bindungsordnungen

In Tab. 5 sind auch die Ergebnisse von π -Bindungsordnungs-Berechnungen nach *Pariser*⁴⁹⁾, *Pople*⁵⁰⁾ und *Parr*⁵¹⁾ zusammengestellt. Je nach Wahl und Bestimmungsmethode der benötigten empirischen Parameter treten beträchtliche Abweichungen in den berechneten Bindungsordnungen bei derselben Verbindung auf.

⁴⁹⁾ R. Pariser, J. chem. Physics 21, 568 (1953).

⁵⁰⁾ J. Pople, Trans. Faraday Soc. 49, 1375 (1953).

⁵¹⁾ R. G. Parr, The Quantum Theory of Molecular Electronic Structure, W. A. Benjamin, New York 1966.

Abbild. 3. HMO-π-Bindungsordnung-Bindungslängen-Beziehung (14) für CN-Bindungen, Berechnung mit den neuen Heteroatomparametern (12)

Die graphische Darstellung in Abbild. 4 ergibt die Ausgleichsgerade (15) mit einer Standardabweichung von 0.022 Å und einem Korrelationskoeffizienten von 0.801 für 168 Werte. Anders als bei den CC-Systemen³⁾ bringt die PPP-SCF-Berechnung keine

$$R_{rs}^{SCF}$$
 [Å] = 1.443-0.167 p_{rs} (15)

Verbesserung der HMO-Beziehung (14). Standardabweichung und Korrelationskoeffizient sind jedoch besser als bei der HMO-Berechnung mit den *Streitwieser*-Parametern^{37b)}.

Diskussion der Ergebnisse

Die HMO- π -Bindungsordnung-Bindungslängen-Beziehung (14) ergibt für den hypothetischen $C_{sp2}-N_{sp2}$ -Einfachbindungsabstand 1.474 \pm 0.019 Å und für den hypothetischen $C_{sp2}=N_{sp2}$ -Doppelbindungsabstand mit p = 1.0 1.249 \pm 0.019 Å.

Für den C=N-Doppelbindungsabstand in unkonjugierten Azomethinen mit p = 0.9398 wird eine Bindungslänge von 1.265 \pm 0.019 Å vorausgesagt.

Chemische Berichte Jahrg. 103

Abbild. 4. PPP-SCF-π-Bindungsordnung-Bindungslängen-Beziehung (15)

Der experimentelle C=N-Doppelbindungsabstand im Benzalanilin⁵²⁾ von 1.237 \pm 0.015 Å erweist sich gegenüber dem nach Beziehung (14) berechneten Wert von 1.292 \pm 0.019 Å als wesentlich zu klein. In Anbetracht der bei anderen Schiffschen Basen bestimmten C=N-Doppelbindungsabstände (1.281 \pm 0.024 Å in der Benzyliden-4-amino-benzoesäure ⁵²⁾, 1.269 \pm 0.021 Å im 4-Methylbenzyliden-4-nitranilin⁵²⁾, 1.292 \pm 0.018 Å im *N*-[5-Chlor-salicyliden]-anilin⁵³⁾ und 1.288 \pm 0.012 Å im 2-Chlor-*N*-salicyliden-anilin⁵⁴⁾ scheint der experimentelle Fehler beim Benzalanilin größer zu sein als die Standardabweichung angibt.

Von den 114 Werten von Abbild. 3 zeigen 82 (\triangleq 72%) eine Abweichung von weniger als $\pm 1\sigma = 0.019$ Å, 26 (\triangleq 23%) eine Abweichung zwischen 1 σ und 2 σ und 6 Werte eine Abweichung zwischen 2 σ und 3 σ . Unter letzteren befindet sich jeweils die 6–10-Bindung im 9-Alkyl-adenin. Wahrscheinlich ist für diese exocyclische Bindung die angewandte Korrektur der bei Raumtemperatur erhaltenen Bindungsabstände für die Temperaturbewegung (die immer zu einer Bindungsverlängerung führt) nicht korrekt. Ebenfalls zeigen die Werte für die Bindungsabstände im Tricyclochinazolin eine große Abweichung von den mit (14) berechneten Werten. Für alle anderen Werte ist die Übereinstimmung zufriedenstellend.

⁵²⁾ H. Bürgi und J. D. Dunitz, Chem. Commun. [London] 1969, 472.

⁵³⁾ J. Bregman, L. Leiserowitz und G. M. J. Schmidt, J. chem. Soc. [London] 1964, 2068.

⁵⁴⁾ J. Bregman, L. Leiserowitz und K. Osaki, J. chem. Soc. [London] 1964, 2086.

CC-Bindungsabstände in CN-Heterosystemen

In Abbild. 5 sind die Werte der CC-Bindungsabstände der Tab. 5 gegen die HMO- π -Bindungsordnungen, die mit den neuen Parametern (12) berechnet wurden, zusammengestellt. Die Gleichung der Ausgleichsgerade (16) beträgt

$$R_{rs}^{CC(CN-Hetero)} [Å] = 1.569 - 0.273 \, p_{rs} \tag{16}$$

mit einer Standardabweichung von 0.018 Å und einem Korrelationskoeffizienten von 0.811 für 174 Werte. Gleichung (16) zeigt nur eine geringe Abweichung von Gleichung (7), die für Kohlenwasserstoffe bestimmt wurde, d. h. Gleichung (7) kann auch zur Bestimmung von CC-Abständen in CN-Hetero-π-Systemen herangezogen werden.

Die Ausgleichsgerade (17) für CC-Bindungsabstände und PPP-SCF- π -Bindungsordnungen beträgt $R_{rs}^{CC(CN-Hetero)}$ [Å]= 1.514-0.188 p_{rs} (17)

0.800 für 141 Werte. Auch (17) stimmt nicht genau mit der für Kohlenwasserstoffe erhaltenen PPP- π -Bindungsordnung-Längenbeziehung³⁾ (18) überein.

$$\mathop{\rm RCC,KW}_{\rm rs}\,[{\rm A}] = 1.531 - 0.205\,p_{\rm rs} \tag{18}$$

Herrn Professor Dr. *Ernst Bayer* wird für die wohlwollende Förderung und Unterstützung dieser Arbeit herzlich gedankt. [116/70]

mit